On a Variational Principle for the Navier-stokes Equation

نویسنده

  • DIOGO AGUIAR GOMES
چکیده

In this paper we study the variational principle for the Navier-Stokes equation described in [Gom05], and clarify the role of boundary conditions. We show that in certain special cases this variational principle gives rise to new models for fluid equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of instable fluid velocity in pipes with internal nanofluid flow based on Navier-Stokes equations

In this article, the instable fluid velocity in the pipes with internal nanofluid is studied. The fluid is mixed by SiO2, AL2O3, CuO and TiO2 nanoparticles in which the equivalent characteristic of nanofluid is calculated by rule of mixture. The force induced by the nanofluid is assumed in radial direction and is obtained by Navier-Stokes equation considering viscosity of nanofluid. The displac...

متن کامل

Stochastic Least-Action Principle for the Incompressible Navier-Stokes Equation

We formulate a stochastic least-action principle for solutions of the incompressible Navier-Stokes equation, which formally reduces to Hamilton’s principle for the incompressible Euler solutions in the case of zero viscosity. We use this principle to give a new derivation of a stochastic Kelvin Theorem for the Navier-Stokes equation, recently established by Constantin and Iyer, which shows that...

متن کامل

Anti-Symmetric Hamiltonians (II): Variational resolutions for Navier-Stokes and other nonlinear evolutions

The nonlinear selfdual variational principle established in the first part of this paper [8] – though good enough to be readily applicable in many stationary nonlinear partial differential equations – did not however cover the case of nonlinear evolutions such as the Navier-Stokes equations. One of the reasons is the prohibitive coercivity condition that is not satisfied by the corresponding se...

متن کامل

On a p(x)-Kirchho equation via variational methods

This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005